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Abstract: ~ Deadlock in robotics can be a frustrating problem if ignored. It is described
as a halt state where two threads wait on each other to release a resource. The recent rise in
the use of ant colony algorithms in solving problems is what inspired this paper. Several
heuristic methods for finding a solution to this problem have been designed hence the
improvement of the ACO algorithm. This paper is devoted to solving deadlock problems in
robotic mapping with the ant colony algorithm by improving on the traditional ACO to
achieve efficient recovery techniques during robotic mapping. It also outlines the use of
mathematical functions of the ACO to influence robots in their probabilistic decision
making in a deadlock state. Results from this paper prove that the improved ACO with the
retraction mechanism is more efficient and increases the differences of results and is useful
to discover the ideal way.

1. Introduction

Recently, the deadlock problem has gained a more topical value in many fields of study. The
deadlock problem has been a significant issue in mapping, along with a few others. It is impossible
for moving ants not to have jams, likewise mobile robots. The reason is when speed (v=d/f) and
density (p) hit tipping point jams are inevitable. Therefore this situation is directly dependent on the
solution to this problem. In this work, the possibility of applying an improved ant colony algorithm
to various deadlock problems is considered. A few endeavors have been made to fathom the
deadlock, some of which are still finding the best solution to the problem. According to (frontiers
2019), [2] the problem can be best solved using an improved ant colony algorithm and the MAX-
MIN ant systems in a constructed grid environment model. According to (Reactive Mission and
Motion Planning with Deadlock Resolution), [1] the idea of using linear temporal logic to improve
the mission and motion planning of robots that will be performing a task in a complicated
environment with moving obstacles. A few others like Ahmed Saleh, Guido Maione, and John
Fredrick Chiong lo all have made contributions, mostly tackling the problem at the base level by
outlining a few detection techniques and preventions. This paper adds to the pool of knowledge of
robotics and ACO in an unending cycle of updates and improvements. As we still journey on into a
more sophisticated era of computing and technology, note that every idea and addition is not little
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but can be harnessed for the future of robotics. The ant colony optimization was proposed by an
Italian scientist named Marco Dorigo as part of his Ph.D. in 1992. Furthermore, the first ant-
inspired algorithm was called the ant system, but these days we use an improved version of the
algorithm, which is now called the ant colony optimization algorithm. The main inspiration from
the ant colony optimization comes from stigmergy. This is the interaction and coordination of
organisms in nature by modifying the environment. In stigmergy, the trace left in the background by
a body stimulates the performance of the next body by the same or different agent.

2. Fundamentals
2.1.Deadlock

Models of the environment are required for a vast extent of automated applications, from search and
rescue to robotize vacuum cleaning. Robots that can acquire an accurate model of their environment
on their own are regarded as fulfilling a significant precondition of genuinely autonomous agents.

The mapping issue is, by and large, respected as one of the fore most critical issues within the
interest of building genuinely independent, versatile robots. When a robot or an ant is found in a
complex environment or an unstructured mapping environment, there is the likelihood of a
deadlock situation. A deadlock is two threads waiting on each other to release a resource. When
more of the ants are trapped in a deadlock type of situation, the rate of reaching the optimal goal is
severely reduced, resulting in a decrease in the diversity of solutions. When related to mobile robots,
it takes much time to kick out of the situation.

Figure 1: A scene of a deadlock situation.

Figure 1, the above figure, explains the deadlock situation. When ant x leaves home or a robot is
set to start from the starting point x to go search for food or retrieve the blue ball, it seeks to find the
shortest possible route. In the case of an ant, when caught in a deadlock like in Figure 1, it applies a
natural mechanism called the retraction mechanism by moving a step back and then further back
until it is out of the halt state. This situation can be bit frustrating for ants, especially in a complex
environment with movable and non-movable obstacles. If ant x does not escape the deadlock on
time other ants will catch up using the pheromone trails left behind by the initial ant, and then
collision and overcrowding will take place. It increases the mortality rate of the ants. Since the ants
and robots use stigmergy, their actions are a bit probabilistic; therefore, they can be altered. In the
case of the mobile robot, where its task is to retrieve the blue ball, it communicates with its
environment with sensors until it retrieves the ball. However, what if it also finds itself in a
deadlock, without the natural response of the ants it will get stuck until it manually moved or the
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obstacle moved if in a simulated environment. Nevertheless, what this paper seeks to do is to apply
the same natural response used by the ants to kick out from a halt in mapping in robotics.

2.2.The ACO Algorithm

ACO algorithm

:Begin;

Initialize the pheromone trails and parameters;
Generate population of m solutions (ants);
For each ant /&m: calculate fimess (k);

For each ant determine its best position;
Determine the best global ant;
Update the pheromone trail;
Check if termination = true;
-End:
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The Ant Colony Algorithm

Natural ants can find the shortest path from a food source to their nest, without using visual cues by
exploiting pheromone data. Whereas strolling, ants store pheromone on the ground and take after in
the probability of the pheromone previously deposited by other ants. Ants arrive at a choice point in
which they ought to choose whether to turn left or right. Since they have no clue approximately,
which is the most excellent choice, they select arbitrarily. It can be anticipated that, on average, half
of the ants choose to turn left and the other half to turn right. This happens both to ants moving
from cleared out to the right and those moving from right to left. The decision making the process
of the ants and in this case, will be applied to a mobile robot and the use of pheromone simulation
influenced by time to make a decision and to increase the probability of choosing the right path and
backing out from a deadlock situation. This is the mathematical model used to represent the
pheromone model on a graph.

k_[ L1
ﬂT{,j_{Lkn (1)

So basically, delta tau Az shows the amount of pheromone that an ant deposits. Bear in mind an
ant walks on a graph and so it moves from one point to the next, and that is the reason why the
subscripts i and j are needed. i and j show the edge connecting the node i to the node j, and £ is the
kth ant. This is equal to O if the ant does not move to any of the edges. For example, if the kth ant
refuses to move, then the pheromone level becomes 0. Otherwise, it is 1divided by Lk, which is the
length of the path by the kA ant. Note that the reason for dividing by 1 is that the shorter the path,
the higher the pheromone should be deposited by the ant. Seeing that we have multiple ends, how
do we now calculate the amount of pheromone on each edge?

Tff;* kmzlﬁrf‘lf (without evaporation) @)

The ) of k=1 to m where m = the total number of ants, delta tau i and j, and the superscript £.
This is without evaporation because the pheromone is added over time, but if the evaporation is to
simulated, then add the equation below.

= (1-p) 1;; + X3, At (withevaporation)

)
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1- p Multiplied by the current pheromone (Tii) fevel plus the new pheromone level that should
be deposited by all ants. Rho p is a constant that helps you to define the evaporation rate. When p =

0 there is no evaporation because 1- 0 multiplied by ‘il When p = 1, then it would be 1*1
multiplied by A. That is where the evaporation is at the maximum level. Let us take a look at the
idea between the pheromone level and the evaporation rate.

// 1/18 + 1;3;,:—’;
/|
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I

Fig 2 Cost Gragh
1
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Figure 2: Cost Graph. Figure 3: Pheromone graph.

Figure 2 indicates the paths taken by both the blue and black ants. The black lines indicate the
steps of the 1% ant, and the first step is to calculate the length of those paths. Therefore L1: 5+2+5+6
Arl.lj =1/18 and L2: 5+9+16+5 A‘riljzl/35. Now how do you add that to your pheromone graph?

Areas that were traveled by the 2" ant with the blue pheromone trails are where you add 1/35.
On the contrary, the lines with black pheromone trails must add up 1/18, which has already been
calculated. In the areas where you find both blue and black pheromone trails depicting that both
ants traveled on them, you add both 1/18 and 1/35, using the formular below.

T = Dt ﬁfﬁj 4)

Therefore if an ant is to move from the ant hive from Figure 3, it will likely move to the closest
destination (the tree) because of the high pheromone concentration. Consider an initial pheromone
level of 1 deposited on each of the edges. Using the formular:

T =(-p) 1 ; + e, ATk

)

p=0.5, meaning every time 0.5%of the pheromone level evaporates. Therefore the paths taken by
the black ant will be:
Distance from A-B; 0.5*1+1/8+1/35
Distance from B-C; 0.5*1+1/8
Distance from C-D; 0.5*1+1/8+1/35
Distance from D-A; 0.5%1+1/18
Distance from D-B; 0.5*+1/35
Distance from A-C; 0.5*%+1/35

807



So to get the idea, evaporation removes a little bit of pheromone and adds a little bit depending
on the graphs or edges traveled by the ant.

2.3.Calculating the Probabilities

This step, which is the most crucial thing, is to use the pheromones calculated in the first step to
choose a path. As I have discussed before, ants use probabilities to decide on the shortest path and
also to kick out of a deadlock situation. Below is an equation to simulate this movement.

o (Tij) “(nij)B
P S i oCni)B

Where: yi, j = :j_;

(6)

This means that the probability of choosing the edge i and ;j is equal to
(zi,j) “(alpha) multiplied by ( nij ),B , divided by the sum (3)) of the same equation in the
denominator. Eta (1) indicates the i,j edge on the map. With the parameters alpha and beta, the
impact of tau (7) or eta (1) can be increased or decreased in the process of decision making. The
denominator of this equation as the pheromone and quality of all edges that can be considered on
edge i. this probability of all the edges is calculated for all the edges connected to the current node
and is usually a number between the number of 0 and 1. If you want to make a decision based on
the pheromone level, then you can remove eta (1) from the equation. Since we are interested in the
shortest path, zi,j indicates that the length or cost of an edge how right it is in the process of
calculating the probability of that edge.

Below is a numerical example to better understand the process of calculating the probability of
choosing each edge on a graph.

.' 15 .-5 . _ 1
1 g 1 1
@ , § @, o
Figure 4: Cost graph. Figure 5: Pheromone graph.

For example, in case there is a dark ant that is going to make a decision on which paths to take;
therefore, the probability of choosing the pond:
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= 0.7595

T (D)1 )+ (1)) Y% gu
Probability of choosing the tree: & e
1Xis = 0.0506 Fig 6 Pie Chartrepresentation of the probabilistic calculation

T e R ) (1)
Figure 6: Chart representation of the probabilistic calculation.

This means that the ant is likely to choose the pond over the tree and the car. Judging from the
pie chart, it is obvious the ant did not go to the tree because it had a stronger connection weight than
the car and pond. The ant is likely to go to the pond because of its short distance. Finally, 76%
shows a good indication of the impact of the pheromone and the cost of calculating the probability
of choosing one of the destinations. To alter the simulation process, the pheromone level can be
changed from one to any number of did not a choice, and the result is also going to change,
indicating that the most significant percentage to become the shortest path taken by the ant. This
means that ants consider the quality and the amount of pheromone deposited on a path. The ultimate
question now is how to use probabilities to mathematically choose a destination? Using a technique
called the roulette wheel, this can be achieved. Using the probabilities from the previous simulation
(0.76, 0.19 & 0.05), calculate the cumulative sum, as the first step.

Probabilistic

Fig 7 Cumulative

Figure 7: Cumulative.

To utilize the total chat to choose the goal, a random number (r) between [0, 1] is used.
Therefore if the number is between {0.24< r < 1.00}, then the ant will choose the pond; otherwise,
if it is between {0.05< r < 0.24}, then the ant chooses the car. On the other hand, if it is between
{0.00< r < 0.05}, then it chooses the tree.

3. Improved Robotic Mapping with Deadlock Solution Based On Ant Colony Algorithm

The conventional ACO has taking after inadequacies: the robot may drop into a deadlock state in
which the robot cannot move to the surrounding networks. Within the network outline, the
conventional ACO may have more difficult times in a deadlock. Therefore, this paper makes the
following changes. Handle deadlock. Concurring to the taboo table, it is the judge whether in a halt
state. In case the ants are in a halt state, the withdrawal component will be adopted-complicated,
and the ant or robot will withdraw a step back. If, after withdrawing, it still finds itself in a deadlock,
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it will still withdraw until it’s clear of deadlock and then can now find the optimal path and then
after update the pheromone trail.

Algorithm: Find deadlock and extract robot from the s, i

aal 1: Begin;

1: check if deadlock = true 2:  Initialize the pheromone trails and parameters;
2: while (deadlock) 3 Generate population of m solutions (ants);

3 move back steps plus 1 4 For each, ant ¥€m: calculate fitness (k);

4 determine a new path 5 For each ant determine its best position;

6. Determine the best global ant;
7 Check if deadlock =true

a: while (deadlock)
9: Moveback steps plus 1
10: Determine a new path

11:  Update the pheromone trail;
12;  Check if termunation = true,
13: End;

4. Experimentation

Robots act in the same way as honeybees when choosing their nest, therefore when the robot
environment becomes too is not, movement becomes sophisticated, especially in a deadlock. Robots
locally interact with their environment and each other, and they display their opinion through LEDs.
Undecided robots may discover an option and commit to it. How about when it is unable to come
up with such discovery? The ACO algorithm has proven to be one of the best algorithms when it
comes to its problem-solving capabilities. Wang and Yu (2011) [8], [14] received the new passing
technique, which erased the ants caught in a deadlock state from the ant colony and did not upgrade
the global pheromone. In any case, when more of the ants are caught within the deadlock state, the
number of ants that can reach the objective is substantially diminished, which results in a decrease
within the differing qualities of solutions and, conducive to the look of ideal way for ants.

t_.,‘__&l-
;o
-

Figure 8: Shows an image of ants trapped in a deadlock.

If the ant moves from edge m to edge n, the next optional point is edge s; at this time, the insect
is caught in a halt state, and it cannot move to its encompassing framework. This paper adopts the
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retraction mechanism. As shown in the figure above, the ant, which has strolled into the grid, is
caught within the deadlock state, and the improved technique permits the ant to roll back one step
and upgrades the grid table data. In case the robot is still caught into a deadlock state, the robot will
proceed to rollback until grids. At this minute, the ant or robot gets away from the deadlock zone.
Since the deadlock edge may be the portion of the ideal global way, no pheromone update is carried
out on the deadlock edge. The withdrawal mechanism cannot avoid ants or robots from entering a
deadlock state, but it lets the halted ants or robot return back to the previous grid until there is an
available grid around the ants.

According to (Stiitzle and Hoos, 2000), [16] this problem can also be solved using the MAX-
MIN ant system. With this system, the pheromone trail is updated. The pheromone is into upgrade
history after each emphasis trial in the conventional ant colony algorithm. Whereas within the
MMAS, only the path pheromone of the ideal network is upgraded after the cycle is completed.
Appropriately, the adjusted pheromone path upgrade rule is expressed by:

T j(tHl)=(1-p)r;; () + T{l.:?ﬂ -
Q0 Qs
At () = et e "
% = 1Cals (1) + w2 turns (1) )
Viobot
=g 1
v Wiobot ( O)
W2 =V;opot xta (12)

Where Q3 may be a constant more than 1.Lbest denotes to the briefest way right now found by
the calculation, Cals (1) speaks to the whole of all the points of turning on the most excellent
optimized way. Turns (1) are the whole of the turns on the most excellent optimized way. W1 and
w2 speak to distinctive weight coefficient and are set by analyzing the robot's structure and
kinematics (Wu et al., 2013; Li et al., 2017). [8], the wl and w2 can change the overturning point
and turning times into grid length, individually. Vrobot speaks to the steady speed of a portable
robot. Wrobot speaks to the precise speed of a portable robot because it turns. Ta speaks to the time
of increasing speed and deceleration as the portable robot turns once. The improved ACO is better
by reason of considering how quickly the sequence converges. If put side by side to the traditional
ACO, the improved ACO has a higher percentage of about 60% in the number of iterations and
about 40% in reducing bends.

5. Results

This paper takes a bold step towards modifying the ACO by applying the retraction mechanism in
complicated maps for the portable robot, especially in the retraction of robots in a deadlock
situation; by utilizing the retraction mechanism and the improved algorithm during mapping
planning of the robot. The issue of ant deadlock is unraveled and the calculative probability is
improved. Results of the ACO with retraction mechanism and ACO without retraction mechanism
run on different iteration maps below proves the efficiency of the improved ACO in different
simulations. The results below indicate the defined movement of the robot with and without
retraction mechanism and whether or not it is been run on the improved ACO.
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Figure 10: Performance comparison on a trough map. Figure 11: Performance comparison on a
baffle map.

6. Conclusions

ACO with the withdrawal mechanism has higher proficiency and less emphasis than ACO without
the withdrawal component. When ants or robot drops into a deadlock state, the withdrawal
mechanism is utilized to replace the new passing procedure, which avoids a vast number of ant
deaths in one cycle. Subsequently, each insect can get away by utilizing the retraction component,
which increases the differences of results and is useful to discover the ideal way.
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